Planets of Our Solar System
نویسنده
چکیده
منابع مشابه
Exponential law as a more compatible model to describe orbits of planetary systems
According to the Titus-Bode law, orbits of planets in the solar system obey a geometric progression. Many investigations have been launched to improve this law. In this paper, we apply square and exponential models to planets of solar system, moons of planets, and some extra solar systems, and compare them with each other.
متن کاملJupiter's role in sculpting the early Solar System.
Recent observations made by the Kepler space mission, combined with statistical analysis of existing ground and space-based data, have shown that planets somewhat bigger than the Earth—but substantially smaller than Jupiter—are extremely common in our Galaxy (1–4). These systems are typically found to be tightly packed, nearly coplanar, and have nearly circular orbits. Furthermore, these planet...
متن کاملGalactic planetary science
Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in o...
متن کاملExoplanet orbital eccentricity: multiplicity relation and the Solar System.
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number ...
متن کاملChances for earth-like planets and life around metal-poor stars
We discuss the difficulties of forming earth-like planets in metalpoor environments, such as those prevailing in the Galactic halo (Pop II), the Magellanic Clouds, and the early universe. We suggest that, with less heavy elements available, terrestrial planets will be smaller size and lower mass than in our solar system (solar metallicity). Such planets may not be able to sustain life as we kno...
متن کاملThe orbital evolution of planets in disks
The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on...
متن کامل